NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED

July 1942 as Report Advance

CALCULATED EFFECTS OF FULL-SPAN SLOTTED AND FOWLER

FLAPS ON LONGITUDINAL STABILITY AND CONTROL

CHARACTERISTICS FOR A TYPICAL FIGHTER-TYPE

AIRPLANE WITH VARIOUS TAIL MODIFICATIONS

Telephone Cangley Memorial Aeronautical Laboratory Langley Field, Va.

WASHINGTON

NACA WARTIME REPORTS are reprints of papersoriginally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE REPORT

CALCULATED EFFECTS OF FULL-SPAN SLOTTED AND FOWLER

FLAPS ON LONGITUDINAL STABILITY AND CONTROL

CHARACTERISTICS FOR A TYPICAL FIGHTER-TYPE

AIRPLANE WITH VARIOUS TAIL MODIFICATIONS

SUMMARY

By R. Fabian Goranson

An analytical study has been made of the influence of full-span slotted and Fowler flaps on the requirements for horizontal tail surfaces. The individual and combined effect of changes in tail area and aspect ratio have been considered.

Elevator deflection required to land at threepoint attitude, elevator deflection required to stall the airplane at altitude, and permissible center-of-gravity range have been calculated for a fighter-type airplane and the results are presented in tabular form.

The results show that a moderate increase in tail volume will satisfy the demands of flaps (such as the slotted type) which give moderate lift and pitching-moment increments, but when a large permissible center-of-gravity range is desired with these flaps or if flaps which give large lift and pitching-moment increments (such as the Fowler flap) are used, the provision of an adjustable stabilizer is mandatory if abnormally large tail surfaces are to be avoided.

INTRODUCTION

At the request of the Bureau of Aeronautics, Navy Department, an analytical study has been made of the influence of full-span flaps on the requirements for horizontal tail surfaces. The basic dimensions of a typical fighter-type airplane were used as a basis for

calculating the effects of variations in tail length, tail area, and tail aspect ratio on the longitudinal characteristics obtained with full-span slotted and Fowler flaps.

METHOD OF CALCULATION

The calculations are based on the method outlined in reference 1. It was possible, when reference 2 became available, to extend the method of reference 1 to the calculation of elevator deflections required for landing.

The dimensions of the airplane on which the calculations are based are listed in table I. Also listed are the dimensions of the tail modifications investigated with the various flap arrangements.

The characteristics of the flaps were taken from references 3 and 4 for a 0.25-chord slotted flap and a 0.25-chord Fowler flap, respectively. The maximum deflection of both flaps was assumed to be 40° .

The angle of incidence of the stabilizer was assumed to be 0° except in the case of the unmodified airplane with the flaps retracted, where the original setting of $1\frac{1}{8}$ 0 was used. Changes in tail length were obtained by changing the distance from the quarter-chord point of the wing root, rather than from the center of gravity, in order to fix the reference point.

DEFINITION OF SYMBOLS

 $d\delta_e/d\alpha$ rate of change of elevator angle with angle of attack

x distance from root quarter-chord point to elevator hinge line, measured parallel to thrust line

St total horizontal-tail area

At aspect ratio of tail

cs

b _t	tail span
δ _e	elevator angle, positive when trailing edge is below neutral position
δ _{estall}	elevator angle required to stall the airplane at altitude
δ_{eland}	clevator angle required to land at three- point attitude
i t	angle of incidence of stabilizer relative to thrust line, positive when leading edge is higher than trailing edge
C _{Lstall}	maximum wing lift coefficient at which tail stalling occurs

RESULTS AND DISCUSSION

root wing chord

The results of the calculations are listed in table II. The data for each configuration are divided into four vertical groupings as follows:

- Line drawing of airplane together with basic dimensions
- 2. Stability and control characteristics with flaps retracted
- 3. Stability and control characteristics with slotted flap
- 4. Stability and control characteristics with Fowler flap

The stability and control characteristics are presented for the limiting center-of-gravity positions as determined by the values of these characteristics necessary for acceptable flying qualities. The horizontal rows of the table present data for the following center-of-gravity positions:

- l. Most rearward center-of-gravity position allowable to maintain passable longitudinal stability with flaps up (A value of $d\delta_e/d\alpha$ of 0.18 was taken as a minimum limit.)
- 2. An arbitrarily fixed center of gravity at 28.5 percent mean aerodynamic chord to provide a ready comparison of the effectiveness of the various changes
- 3. The most forward center of gravity as limited by the power of a 30° elevator deflection to maintain three-point attitude during landing with the stabilizer fixed at zero incidence.
- 4. The most forward center of gravity as limited by item 3 if the stabilizer were adjustable to a -5° incidence for landing

The elevator angles listed in table II for the landing condition frequently exceed -30°. These angles were computed on the assumption that the elevator effectiveness was constant over an unlimited range of deflection. Although this assumption is obviously incorrect for large deflections, the angles shown indicate where and by how much the elevator requirement is exceeded.

The tabulated data may be summarized as follows:

- 1. The critical elevator requirement in every case is the deflection necessary to maintain three-point attitude in landing.
- 2. The principal effect of increased effective tail volume is to permit a more rearward position of the center of gravity (without instability when flaps are retracted), thus decreasing the elevator deflection required for three-point landing.
- 3. Satisfactory characteristics with the full-span slotted flap would exist within the following limits of center-of-gravity positions:

[The tail-volume ratio is the ratio of the tail volume to that of the original airplane]

	nfigura e table		Center-of-gravity r factory stability percent M	and control,
	Tail- volume ratio	Tail aspect ratio	Fixed stabilizer	-5° adjustable stabilizer
A B C D E F G H	1.0 1.25 1.19 1.25 1.25 1.56 1.49	3.81 5.0 3.81 5.0 3.81 5.0	30.1 - 30.1 29.1 - 31.0 28.5 - 32.5 30.3 - 31.3 29.4 - 33.5	25.7 - 28.5 24.0 - 30.1 23.2 - 31.0 22.9 - 32.5 24.1 - 31.3 22.2 - 33.5 21.1 - 35.0 19.4 - 36.5

4. Satisfactory characteristics with the full-span Fowler flap would exist within the following center-of-gravity limits:

	onfigura ee table		Center-of-gravity r factory stability percent M	and control,
	Tail- volume ratio	Tail aspect ratio	! · · · · · · · · · · · · · · · · · · ·	-5 ⁰ adjustable stabilizer
A B C D E F G H	1.0 1.0 1.25 1.19 1.25 1.25 1.56 1.49	3.81 5.0 3.81 5.0 3.81 5.0 3.81	- do - - do - - do - - do - - do -	None 30.1 - 30.1 29.2 - 31.0 27.5 - 32.5 29.8 - 31.3 27.5 - 33.5 26.6 - 35.0 24.7 - 36.5

5. Tail stalling will occur at fairly low speeds when flaps are fully deflected with the stabilizer adjusted to maximum negative incidence. The adjustable stabilizer, however, is necessary only to permit the three-point attitude during landing; the airplane can be stalled at altitude, flaps extended, with reasonable elevator deflection, and without tail stalling with the stabilizer neutral.

The present study was chiefly concerned with the requirements of horizontal-tail size and tail length for providing sufficient control power and stability. The aerodynamic balance required of the control surfaces for satisfactory control forces is obviously increased over that required of the unmodified airplane, particularly for the maneuvering condition of flight with the large tail areas shown.

As a matter of interest, the maximum lift coefficients obtainable with the various tail configurations were calculated by the method of reference 5 and corrected for the tail load required at the most forward allowable center-of-gravity positions. The ground effect, which unpublished data indicate may cause a reduction in maximum lift coefficient, has been neglected in these calculations. The results are presented in the following table:

		****	Maxim	um lift	coefficie	nt
	figurati table I		Fix stabil		Adjust stabil	
Air- plane	Tail- volume ratio	Tail aspect ratio	Slotted flap	Fowler flap	Slotted flap	Fowler flap
A B C D E F G H	1.0 1.0 1.25 1.19 1.25 1.25 1.56 1.49	3.81 5.0 3.81 5.0 3.81 5.0 3.81 5.0	2.55 2.54 2.53 2.56 2.56 2.55 2.55	2.90	2.52 2.48 2.48 2.47 2.50 2.49 2.48 2.47	2.83 2.82 2.80 2.86 2.86 2.83 2.81

CONCLUSIONS

On the basis of this study it may be concluded that the use of full-span flaps greatly increases the demands made on the horizontal tail. With flap types giving moderate lift and pitching-moment increments (such as the slotted flap) it appears practicable to take care of the increased tail requirements simply by an increase in tail volume over that conventionally used. With full-span flaps giving large lift and pitching-moment increments (such as Fowler flaps) or with flap types giving moderate lift and pitching-moment increments when large permissible center-of-gravity variations are desired, the provisions of an adjustable stabilizer appears mandatory unless tail volumes far greater than those normally required are used.

REFERENCES

- Gilruth, R. R., and White, M. D.: Analysis and Prediction of Longitudinal Stability of Airplanes. Rep. No. 711, NACA, 1941.
- 2. Katzoff, S., and Sweberg, Harold H.: Ground Effect on Downwash Angles and Wake Location. T.N. No. 845, NACA, 1942.
- 3. Wenzinger, Carl J., and Harris, Thomas A.: Wind-Tunnel Investigation of an N.A.C.A. 23012 Airfoil with Various Arrangements of Slotted Flaps. Rep. No. 664, NACA, 1939.
- 4. Harris, Thomas A., and Purser, Paul E.: Wind-Tunnel Investigation of an NACA 23012 Airfoil with Two Sizes of Balanced Split Flap. NACA A.C.R., Nov. 1940.
- 5. Pearson, H. A.: Span Load Distribution for Tapered Wings with Partial-Span Flaps. Rep. No. 585, NACA, 1937.
- Langley Memorial Aeronautical Laboratory
 National Advisory Committee for Aeronautics
 Langley Field, Va.

TABLE I
DIMENSIONS OF AIRPLANE USED IN CALCULATIONS

Configuration change	Original airplane	1.25S _t	1.25x	St original At = 5.0	1.250t At = 5.0
Wing area, so ft	260.0				
Wing span, ft	33.0				
Wing aspect ratio	5.56				
Wing taper ratio	1.67				
Wing incidence, deg	0				
Wing airfoil section	MACA 230			į	
•••	series				
Wing root chord,					
c _s , ft	8.57				
Wing M.A.C., ft	7.01				
Total horizontal-			-		
tail area, St, sq ft	t 49.05	61.3		49.05	58.5
Elevator crea back of	i	_			
hinge line, sq ft	18.62	23.3		18.62	23.2
Elevator balance area,					•
sq ft	14.96	6.2		4.96	5.92
Tail span, bt, ft	13.67	15.28		15.65	17.1
Tail aspect ratio, At	3.81	3.81	1	5.0	5.0
Stabilizer incidence					
relative to thrust			-		1
line, it, deg	1.5	0	0	0	0
Length of fuselage, ft	25.8	ļ	30.3	İ	
Maximum fuselage					
width, ft	4.6	-	4.6		İ
$c_s/4$ to nose of					
fuselege, ft	6.2		6.2		1
cs/4 to elevator	1				
hinge line, x, ft	17.9		22.4		
cs/4 to propeller		l · .			
plane, ft	7.0		7.0		
propeller diameter, ft	9.75				
Weight, full load					ł
fighter, 1b	7063				

MACA

TABLE IN
CALCULATED LONGITUDINAL STABLITTY AND CONTROL CHARACTERISTICS
WITH PULL-SPAN FLAPS AND VARIOUS TAIL MODIFICATIONS
E.g. positions are given in percentage M.A.C.J.

			For a serious are garent in percentage areas						1	i			}						ſ
	Desto	tail	,	2	T SOS	Flans retracted	ą	ŀ	83	Slotted flaps	_	40	-	-	-	Youler Clay	ᅪ	148	
Configuration	oonfigure of the n	oonfiguration obenges B & At bt	G.g. description and determinant	w o	9 9	Ostall Pland (der)	Jand (deg)	c.g. do		$\begin{pmatrix} c_{atall} & c_$	Acad (acad	1 CL (40g)		. 6 .		0 = 300 0 = 300 0 = 300 0 0 0 0 0 0 0 0 0	Diag.	300 = 300 14 15 15 15 15 15 15 15 15 15 15 15 15 15	30g
(A)	 	τ	Most rearest c.g. dog = 0.16,	28.5 0.18	0.18	0.8	18.0	28.5 0.47	\$	0.	8.8	8.8		26.5	80	0: 5	£.	-10.	1.98
		8.8 =	c.g. 28.5 for all configurations	28.5	.18	6.0	-18.0	28.5	÷	63.0	8.8	8.6	.61	20.8	8. 2	-84.0	-48.6	-10.4	3.
62°2	fantatro fantatro	fantatro fantatro	Most forward c.g. to land, 8e =-300, 1e = 00					80	c.g. back	of meximo	of maximum rearward position	prami		9	back o	c.6. back of maximum recreated position	2	President of the same of the s	
	· · · · · · · · · · · · · · · · · · ·		Most forward c.g. to land, 6e =-300, it = -50					26.7	29.	-14.8	- 0°òs-	-5.0	8	9.0	c.g. back o	of meximum rearmerd position		1	
(4) (9)	 	. 10	Most rearrand c.g. dog = 0.18, flaps retracted	30.1 0.18		Q1	-16.2	30.1 0.48 43.7	\$		8	•		0.1	30.1 0.39 -84.1		8.6	•	1.30
		O. Albiro	c.g. 28.5 for all configurations	29.5	.25	-3.5	-16.5	28.5	8	-16.8	-0.38	-1.1		28.5	74.	-8e.8 -4	-41.5	ις. Ψ	1.68
62/-×	ferinal:	9 91'1 =	Most forward c.g. to land, 0, m-300, 1t = 00	· · · · · · · · · · · · · · · · · · ·				30.1	3	-13:7	-29.5	0	•	9: 0	back o	c.g. back of maximum rearward position		p. wa.	
		72°92	Most forward c.g. to land, 6 =-300, it = -50					0.43	- 94-	-14.0	-80.62-	0 0-9-	0.93	30.1	.39 -24.1		- 7.62	. 0.3-	1.80
			Most rearward c.g. dbg = 0.18, ds flaps retracted	51.0 0.18		-2.1	18.1	51.0 0.47	47	11.6	-27.4	i 0	-	31.0 0.38	36 -41.2		26.7	-3.2	1.08
			c.g. 28.5 for all configurations	28.5	.31	7.7	-17.4	28.6	- 88	-15.5	-31.5	0 4.0-	0.61 2	28.5	.55 -65.5	1		-6.6	1.87
	fantata fantata	isaizia SI.I =	Most forward e.g. to land, be =-309, it = 00			·	-	29.1	99.	-16.4	2.03-	0		9.0	back o	6.g. back of maximum rearestd position	, m	p. ma. i.	
			Most forward 0.g. to land, 8e =-300, it = -50					23.2	.81 -13.9		- 69.7	-6.0 1	1.10	9.	.49 15	15.4	6.69	-5.0	1.30

CALCULATED LOWOITUDINAL STABILITY AND CONTROL CHARACTERISTICS WITH FULL-SPAN FLAPS AND VARIOUS TAIL MODIFICATIONS ' [6.6. positions are given in percentage M.A.C.]

		Basic tail	\vdash		Plaps	Flaps retracted			310	Slotted flaps					Powler flaps	Claps		
Configuration	H (onfiguration changes		determinant	90 · 8 · 9 · 9	0 9 stall	Gatall Gland	80	ှင် ဗို	stall dend (deg)		70 land at 0 =-300 1t Cr	8	8 8	etan (3eg)	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	To land 5	To land a look a
0				t rearward c.g. = 0.18, ps retracted	32.5 0.18	<u> </u>		32.5	0.49	24.9			32.5 0.38			\$1.4	8	99.
T			Ь	c.g. 28.5 for all configurations	28.6 .54	8.	-18.2	28.5	.65-14.3	\$ 60.1	0		28.5	70.	8.23	87.8	7	1.16
NI NI NI NI NI NI NI NI NI NI NI NI NI N	[ant3tr(0.8 0.8	nigiro d Sot	Most forward c.g. to land, de =-300, it = 00				28.8	.66 44.3	\$ 60.1	0		3	c.g. back	of meximum position	r manus r	rearrand	,
				Most forward e.g. to land, 0 ₆ =-309 1 ₄ = -50	·			22.9	.86-12.2	2 -60.0	6.0	i	27.8	25	-15.3	8.69	-5.0 1.27	£,
	4.33 = 60.64 =	± 2.81	78.81 =	Most rearward c.g. dog = 0.18, da = 0.18, flaps retracted	81.5 0.18	-2.2	-16.2	31.3	31.3 0.56 44.2	2 48.5	0	ļ	31.5	31.3 0.46 -25.7		26.7	-5.8 1.06	8
		fanta	<u> </u>	c.g. 28.5 for all configurations	28.5 .52	e; T	47.5	28.5	.68 48.5	5 -52.6	3 -1.8	0.4	28.5	8	0.83	0.14	8.0	1.3
7777	30 88.1 30	140		Most forward c.g. to land, 0. =-300, 1t = 00				80.0	.60 -15.8	8 30.1	0		•	c.g. back	of maximum position	tiens r	reareard	P
			H to	Most forward c.g. to land, δ_0 ==300, it = -50				24.1	.86 -15.6	80.03	-5.0	3.6	80.8	8	17.1	80.1	-5.0 1.23	8
				Most rearward c.g. $\frac{d\delta_0}{d\alpha} = 0.18$, flaps retracted	33.5 0.19	Qi Qi	-15.2	33.5	33.5 0.56 10.5	5 -24.8	0	1	33.5	0.46	27.7	2002	-0.4 0.68	99.
	S = Iac	0.3		28.5 for all Igurations	88. 8.88	5.8	-18.8	28.5	.75 26.8	8 -31.1	9.0- 1		28.5	.67	64.5	8.7.5	4.2	1.10
- Contract of the Contract of	ilgito è		12 = 3°	Most forward c.g. to land, $b_0 = -30^\circ$ $t_L = 0^\circ$				50.4	.72-15.6	6 -29.9	0	-	:	c.g. back	of maximum position		rearrand	ý
	1.21			Most forward c.g. to land, 0s =-509 1t = -50				82.8	.96 -15.7	.7 -50.0	-5.0	1.08	27.5	.7	6.97	6.62	-5.0 1.19	1.14

10

MAGA

CALCULATED LONGITUDIAL STREET T - CONCINDED UNANGERHISTICS WITH FULL-SPAN FLAPS AND VARIOUS TAIL MODIFICATIONS For Destions are given in percentage M.A.G.J.

_	_			,							
	179	120	ŀ	3.0	i	8:1	ŀ	6.0	•	1:0	
	1 4.	# (§	•	7	•	•••	0	9.9	0	0.9	
		43	• •	7	9	•	=	44.4	1:04	-88.4	
Paulen Clene		(deg) (deg)	44.0	3	47.6	.85.	9. 27	\$1.4 \$	27.1	-16.6	
	9	ļë	3.0	£.	ş	8	9,46	â	8	8.	
		# :	35.0 0.45	88.8	0. as	9.	36.5	8.0	8.00	24.7	
	and at	(deg) (deg) (deg)	i	i	i	1.01	i	1		96.0	
	101	(8 t e	0	-0.8	٥	-5.0	•	٥	•	-5.0	
		Jena (See	\$ \$	-30.4	₹0.€	-69.8	21.0	-29.5	-20.5	-69-7	
Shetted Clene	****		6	16.1	79.3	15.5	6.7	-16.2	-15.2	19.4 1.06 -15.4	
Y	9	13	35.0 0.86	.78	.78	81.1 1.08	36.5 0.87	.82	.82	1.8	
egue:		ė		28.5	28.5	21.1	L	28.5	28.6	19.4	
in per		(deg)	16.0	-19.3			-15.0	0.0			
retrac	Detracted Setall (deg) (0.8-	6.3			o.	0.5			
and I	8	9. 6. de	86.0 0.18	\$			36.5 0.18	*			
_	;	9.6	36.0	20.6			36.5	88.5			
C.S. postrans are given in percentage M.A.C.J.	o.g. description	detërminant	Most rearment c.g. : db = 0.18, ds flaps retracted	c.g. 28.5 for all configurations	Most formard.e.g. to land, 0s =-309 it = 06	Mest forward e.g. to land, be m-300	Most rearrand c.g. do = 0.18, ds flaps retracted	o.g. 28.5 for all configurations	Most forward 0.g. to land, 0 =-300, it = 00	Most forward o.g. to land, 0s = 300,	
=	ion no) et		rigia	3°75 •	72.5	1.75 = Lantaire 28.1				
to te	configuration	14	19	£ = 2	rigine))	0.8				
1	Son Ci	1 0 (2) (2)			lant314		<u> </u>		7.19 6		
\vdash		- 5	, , , , , , , , , , , , , , , , , , ,		[antgl=	38-1			Laginal		
	Configuration				reex				- #32·4		
]	<u>(6)</u>				(F)				